5.6 地盤沈下

- 5. 6. 1 現況調査
 - (1) 調査内容

事業計画地周辺における地盤沈下及び地下水位の状況を把握するために、既存資料 調査を実施した。また、事業計画地における地盤状況等について、現地調査を実施した。

現況調査の内容は、表 5-6-1 に示すとおりである。

表 5-6-1 調查内容

調査対象項目	調查対象範囲・地点	調査対象期間	調査方法
事業計画地周辺にお ける地盤沈下の状況 及び地下水位の状況	事業計画地周辺	至近年	既存資料調査 平成 19 年版 大阪市環境白書 (平成 20 年 大阪市)
 事業計画地における 地盤状況等 ・地盤状況 ・地下水位 ・地下水流向・流速 	事業計画地	平成 20 年 4 月~5 月	現地調査 ボーリング調査 透水試験 熱伝導測定

(2) 調査結果

地盤沈下の状況

大阪市では、地盤沈下の状況を把握することを目的に、市内において地盤沈下水 準測量を実施している。平成11年度から隔年実施となり、直近では、平成17年度 に測量延長250km、水準点213点について実施している。

事業計画地周辺の北区における水準点の年間変動量分布並びに年間最大変動量は、 表 5-6-2 に示すとおりである。

事業計画地が位置する北区の年間変動量は-1cm 未満の地点が最も多く、北区に おける年間最大変動量は、中之島 1-1 に設置された観測水準点であり、変動量は -1.92cm となっている。

表 5-6-2 事業計画地周辺における主要地点年間変動(平成 17 年度)

区公	観測	水準点の年間変動量分布				年間最大変動量		
区方	水準点数	-2cm 以上	-1cm 以上	-1cm 未満	変動 なし	+1cm 未満	変動量 (cm)	所在地
北区	14		4	9	1		-1.92	中之島 1-1

出典:「大阪市環境白書 平成 19 年版」(平成 20 年 1 月 大阪市)

② 地下水位の状況

大阪市では、市内11地点において15本の観測井を設置し、地下水位の観測を行っている。平成9年から平成18年における地下水観測結果は、表5-6-3に示すとおりである。

事業計画地が位置する北区では、ストレーナ位置の異なる2本の観測井が中之島 1丁目に設置されており、平成9年から平成13年頃までは、概ね地下水位が上昇 する傾向がみられたが、平成14年以降は低下の傾向にある。

年観測井名	所在地	ストレーナ位置 (m)	平成 9年	平成 10年	平成 11年	平成 12年	平成 13年	平成 14年	平成 15年	平成 16年	平成 17年	平成 18年
天保山B	港区築港 4丁目	96~100.5	4. 41 -0. 83	3.70 -0.13	3.55 0.02	3. 47 ☆	3.56 0.01	3.58 ☆	3.54 0.03	3.57 ☆	3.90 -0.34	4. 42 ☆
鶴 町 B	大正区鶴町 2丁目	25~30	3.67 0.03	3. 02 0. 66	2.88 0.80	2.57 ☆	2.43 1.24	2.63 ☆	2.43 1.24	2.78 ☆	3. 11 0. 55	3.17 ☆
此 花	此花区島屋 5丁目	23~28	1.62 -0.26	1.56 -0.20	1.87 -0.52	0.74 ☆	0.74 0.62	0.82 ☆	0. 92 0. 45	4.65 ☆	6. 13 -4. 77	3.63 ☆
姫 島	西淀川区姫島 4丁目	63~68	2.37 -0.88	1.88 -0.40	1.91 -0.43	1.42 ☆	1.38 0.13	1.35 ☆	1.42 0.06	1.56 ☆	1.86 -0.39	2. 21 ☆
+ Ξ	淀川区十三元 今里1丁目	96.6~100	6.32 -1.96	5.69 -1.33	5.56 -1.21	5. 39 ☆	5.33 -0.97	5.37 ☆	5.38 -1.03	5.60 ☆	6.01 -1.66	6. 27 ☆
中之島A	北区中之島 1丁目	91~96	5. 79 -1. 74	5. 19 -1. 15	5.06 -1.02	4. 89 ☆	4.87 -0.82	4.86 ☆	4.86 -0.81	5.22 ☆	5. 77 -1. 73	6. 01 ☆
中之島B	北区中之島 1丁目	178~183	6.56 -2.53	5.96 -1.95	5.87 -1.85	5.69 ☆	5.68 -1.66	5.86 ☆	6.03 -2.01	6. 23 ☆	6.53 -2.52	7.11 ☆
蒲 生	城東区中央 3丁目	91~96	10.37 -7.92	9.88 -7.43	9.34 -6.89	8.75 ☆	8.31 -5.86	8.01 ☆	7.75 -5.30	7.73 ☆	7.72 -5.27	7.74 ☆
港(Ⅱ)A	港区田中 3丁目	$348 \sim 353$	3.61 -1.10	2.87 -0.36	2.71 -0.21	2. 61 ☆	2.65 -0.14	2.65 ☆	2.61 -0.10	2.70 ☆	3.06 -0.57	3.34 ☆
港(Ⅱ)B	港区田中 3丁目	441~446	13.18 -10.67	12.91 -10.40	12.91 -10.41	12. 94 ☆	12.59 -10.08	11.90 ☆	11.58 -9.07	11.26 ☆	11. 04 -8. 55	10.96 ☆
港(Ⅱ)C	港区田中 3丁目	183~188	5.33 -2.82	4.64 -2.13	4.53 -2.02	4. 42 ☆	4.73 -2.22	4.92 ☆	5.15 -2.64	5. 43 ☆	5. 87 -3. 38	6. 13 ☆
生野 A	生野区巽東 4丁目	13.5~16.5	5.24 0.67	5.09 0.81	4.98 0.93	5. 11 ☆	5.51 0.40	5.50 ☆	5.34 0.57	5.42 ☆	5.28 0.62	5.11 ☆
生野 B	生野区巽東 4丁目	170~180	13.52 -7.52	13. 31 -7. 31	12.71 -6.71	12. 84 ☆	12.61 -6.60	12.36 ☆	12.17 -6.16	12.16 ☆	11.65 -5.64	11. 42 ☆
柴島	東淀川区柴島 1丁目	170~175	7.88 -2.80	7.31 -2.46	7.23 -2.38	7.09 ☆	7.01 -2.15	6.97 ☆	6. 89 -2. 04	6.84 ☆	6. 88 -2. 04	7.03 ☆
馬場町(Ⅱ)	中央区大手前 4丁目	136.7 ~142.2	(33.36) -8.23	33.08 -7.95	32.77 -7.64	32. 47 ☆	32. 13 -7. 00	31.76 ☆	31. 37 -6. 24	31.07 ☆	30. 93 -5. 80	31. 13 ☆

表 5-6-3 地下水位観測結果 (平成 9 年~平成 18 年)

注:1.表中「-」は、不明を示す。

2.12年以降の☆印は、水準測量が隔年実施となったため、測定値なし。

3. 地下水位は、年平均水位で示す。

4. 表中の上段は管頭下(m)、下段は 0. P(m)を示す。

出典:「大阪市環境白書 平成 19 年版」(平成 20 年 1 月 大阪市)

- 計画地周辺の地下水状況
 - a. 地盤状況

事業計画地はJR大阪駅からその北側1kmの間に位置している。事業計画地周 辺は「大阪平野」と呼ばれる低平な地形を呈しており、この大阪平野の西部に位 置している。

大阪平野の地質順序は表 5-6-4 に示すように新第三紀~第四紀更新世の大阪層 群を基盤層としており、その上位に更新世の上部洪積層が分布し、表層部には完 新世の沖積層が厚く堆積するものである。

沖積層は、下部より砂質土及び腐植物を含む粘性土を主体とする下部層、Ma13 と呼ばれる貝殻混じりの軟弱な中部粘性土層、砂を主体とする三角州性堆積物の 上部層に区分される。

一方、上部洪積層は、砂・礫層から成る天満層や海成粘土の Ma12 層などから、 大阪層群は、砂質土と粘性土との互層から構成されている。これらの洪積層は土 質工学的に安定した地盤である。

	時代			層序区分	年代	海水面変化	気候変化	地形発達史
				上部層	2千年前			
	完 新 積 世 層		沖積層	中部粘土層	7千年前	海進 (縄文海進)	温暖	沖積低地の形成
				下部層	1万年前			
		後	上	天満層	2万年前	海退	寒冷	堆積地形面 (低位段丘)の形成
		期	部洲	Ma12 層	10万年前	海進	温暖	中位段丘の形成
			横	砂・礫・粘土層		海退		
第			層	Mall 層		海進		高位段丘の形成
П				砂・礫・粘土層				
	更 新 世	中 期	大阪層群	Ma10 層 Ma 9 層 Ma 8 層 Ma 7 層 Ma 5 層 Ma 5 層 Ma 2 層 Ma 2 層 Ma 1 層 Ma 0 層 Ma-1 層	34 万年前 77 万年前 106 万年前	海進と海退の繰り返し		丘陵地を形成する 地層

表 5-6-4 事業計画地付近の地質層序総括表

出典:「新編 大阪地盤図」(コロナ社・昭和 62 年 11 月 5 日発行) に一部加筆

事業計画地で実施したボーリング調査により推定される事業計画地周辺の地層 構成を表 5-6-5 に、地盤調査地点、地質断面図、地質柱状図をそれぞれ図 5-6-1、 図 5-6-2、図 5-6-3(1)、(2)に示す。

表 5-6-5 地層構成表

地 年	質代	地質 区分	土質 記号	土質 区分	層厚 (m)	N値の範囲 (平均値)	砂質土の相対密度 粘性土のコンシステンシー	色調
		出し	B∼As	砂質土層	5.6 \sim 7.8	$1 \sim 60$ (9)	緩い	暗灰 ~ 黄褐灰
	完新世	盛工 及び 沖積 層	Ас	粘性土層	$\begin{array}{c} 12.6\\ \sim\\ 16.2 \end{array}$	$0 \sim 9$ (3)	非常に軟らかい	暗灰 ~ 暗緑灰
		Asc	砂質土層	$\begin{array}{c} 4.0\\ \sim\\ 11.0 \end{array}$	$4 \sim 58$ (16)	中位の	暗灰	
新生代			Dg1	礫質土層	$\begin{array}{c} 4.2 \\ \sim \\ 11.3 \end{array}$	$8 \sim 60$ (52)	密な	灰 ~ 暗茶灰
· 第 四			Dc1	粘性土層	$\begin{array}{c} 3.9 \\ \sim \\ 11.0 \end{array}$	$6 \sim 44$ (10)	硬い	暗緑灰 ~ 緑灰
期	更新世	洪積 層	Dg2	礫質土層	$ \begin{array}{c} 10.9\\ \sim\\ 18.0 \end{array} $	$13 \sim 60$ (55)	非常に密な	暗灰 ~ 暗青灰
	<u>H</u>	Dc2	粘性土層	$\begin{array}{c} 11.5\\ \sim\\ 12.9\end{array}$	$9 \sim 60$ (17)	非常に硬い	暗緑灰 ~ 暗青灰	
			Dg3	礫質土層	$ \begin{array}{c} 18.5\\ \sim\\ 24.1 \end{array} $	$ \begin{array}{r} 14 \sim 60 \\ (54) \end{array} $	非常に密な	暗灰 ~ 暗青灰

図 5-6-1 事業計画地地盤調査地点

図 5-6-2 事業計画地の地質断面図

図 5-6-3(1) 土質柱状図(地点2) 次頁に続く

図 5-6-3(2) 土質柱状図(地点2)

b. 地下水位の状況

事業計画地で実施した図 5-6-1 に示す 4 地点における地下水調査による平衡水 位を表 5-6-6 に示す。

調査地	調查地点 No.		1		2		3		4	
帯水層	対象土質 (土層)	試験深度 (GL-:m)	平衡水位 (TP-:m)	試験深度 (GL-:m)	平衡水位 (TP-:m)	試験深度 (GL-:m)	平衡水位 (TP-:m)	試驗深度 (GL-:m)	平衡水位 (TP-:m)	
自由水	盛土及び 沖積 砂質土層 (B~As)	5m	1.09m	5.25m	1.31m	5.10m	1.29m	5.10m	0.99m	
第一 被圧水	洪積 礫質土層 (Dg1)	32m	4.54m	28m	1.92m	31.10m	1.87m	30.10m	1.43m	
第二 被圧水	洪積 礫質土層 (Dg2)	42m	2.50m	45m	1.71m	46.10m	1.69m	46.10m	1.72m	

表 5-6-6 平衡水位

注:1.試験深度(GL-:m)は各孔口標高からの深度(m)を示す。

2.平衡水位(TP-:m)は標高0mからの深度(m)を表す。

c. 地下水の流向・流速

地下水流向流速試験は、熱伝導(熱量)方式で実施した。地盤調査地点1~4 での自由水の流向流速結果を図 5-6-4 に示す。調査結果より、自由水(盛土及び 沖積砂質土層(B~As))は概ね北西方向への流向が観測された。事業調査地付 近には北側に淀川、遠くは西側に大阪湾が存在するため、淀川及び大阪湾方向へ 流れているものと推測できる。第一被圧水(洪積礫質土層(Dg1))及び第二被圧 水(洪積礫質土層(Dg2))の地下水は自由水のような季節変動の影響を受け難く 比較的安定しているため、文献1をもとにそれぞれ南、北西方向と設定した。

文献1)清田泰行:大阪市北部における天満層の地下水流動 日本応用地質学会 平成5年度研究発表会

図 5-6-4 地下水流向流速調查結果(自由水)

- 5. 6. 2 施設の存在に伴う影響の予測・評価
 - (1) 予測内容

本事業における地下構造物の設置が、事業計画地周辺の地下水位及び地盤沈下の状況に及ぼす影響について、数値計算により予測した。予測内容は、表 5-6-7 に示すとおりである。

表	5 - 6 - 7	予測内容
1X	001	

予測項目	予測範囲	予測時点	予測方法
地下水位の変化及び 地盤状況 ・地下水位 ・地盤沈下量	事業計画地周辺	建設完成後	 ・略算式により地下構 造物の上流側・下流 側での地下水の変動 量の算定 ・砂地盤の弾性沈下 量、粘性土地盤の圧 密沈下計算の合算に よる算定

(2) 予測方法

① 予測手順

地下構造物の設置による地下水位及び地盤沈下の予測手順は図 5-6-5 に示すとおりである。

事業計画をもとに、地下構造物をモデル化し、現状の地下水位及び流向等から、 地下構造物の設置に伴う地下水流動阻害による地下水位の変化量を算出した。また、 地下水位変化量から地盤沈下量の推定を行った。

図 5-6-5 地下水位・地盤沈下の予測手順

- ② 予測方法
 - a. 地下水位低下量の算定

地下構造物設置に伴う地下水の変動量は数値実験に基づく地下水流動阻害の評価式²⁾に基づき、(1.1)に示す略算式により算定した。なお、図 5-6-6 に示す とおり、地下水の流向に対して、地下構造物の上流側では水位が上昇し、下流側 では水位が低下する。

 $Sc = I L \sin \theta$

(1.1)

Sc : 下流側水位低下量 (=上流側水位上昇量)

- I :自然状態における地下水の動水勾配
- L : 不透水構造物の半長
- θ :自然地下水流動方向と不透水構造物がなす交角
- ここで、
 - 地下水を遮る不透水構造物の長さ(2*L*) = 470m または 115m (図 5-6-8) 自然地下水流動方向と不透水構造物がなす角(θ)=45° または 90°
 - 2):「地下水流動保全のための環境影響評価と対策」(地盤工学会)

図 5-6-6 地下構造物による水位変化

図 5-6-7 平面モデル

470m 115m 山留壁先端 GL-約 38m 山留壁先端 GL-約 28m

図 5-6-8 不透水構造物の長さの設定

b. 地下水位低下に伴う地盤沈下量の算定

a で求めた水位低下量と地盤調査(PS 検層、圧密試験)結果に基づき、粘土 層の圧密沈下量と帯水層の弾性沈下量の合算により総沈下量を算定した。

ここで粘性土の最終圧密沈下量は、Cc 法((1.2)式)により算定した。なお、 今回の対象粘土層は土質試験の結果、過圧密であるため、圧縮指数 Cc の代わり に再圧縮指数 Cr(=1/10Cc)を用いた。

$$S_{i} = L_{i} \frac{C_{c}}{1 + e_{0}} \log_{10} \frac{\sigma_{Z0i}^{'} + \Delta \sigma_{wi}}{\sigma_{Z0i}^{'}}$$
(1.2)

また、帯水層の弾性沈下量は、以下に示す方法で算定した。

 各層 i における地下水位低下による有効応力の増分を考慮した地盤剛性 E_{nwi}を(1.3)式により求める。

$$\frac{E_{0wi}}{E_{0i}} = \sqrt{\frac{1 + \sqrt{\sigma'_{Z0i} / (\sigma'_{Z0i} + \Delta \sigma_{wi})}}{2 \times \{\sigma'_{Z0i} / (\sigma'_{Z0i} + \Delta \sigma_{wi})\}}}$$
(1.3)

② 各層 i における地下水位の低下に伴う地盤のせん断ひずみを(1.4)式により求める。

$$\varepsilon_{0\mathrm{w}i} = \gamma_{0\mathrm{w}i} = \frac{\Delta \ \sigma_{\mathrm{w}i}}{E_{0\mathrm{w}i}} \cdot \frac{(1 - \nu - 2\nu^2)}{(1 - \nu)} \tag{1.4}$$

③ せん断ひずみによる剛性低下を考慮したせん断ひずみを(1.5)式により求める。

$$\gamma'_{wi} = \gamma_{0wi} + \mathbf{K} \cdot \gamma_{0wi}^{R} \tag{1.5}$$

④ 各層 i における沈下量を(1.6)式により求める。
 δ_{wi}=γ'_{wi}・Li
 (1.6)

ここに、Si : 土層 i における最終沈下量 Cc : 圧縮指数 Li : 土層 i の層厚 e₀ : 初期間隙比

- σ'_{70i}:水位低下前の地盤の有効鉛直応力
- Δ σ_{wi}:水位低下に伴う有効応力の増分
- E_{0i} : 土層 i における初期変形係数
- E_{0wi} :水位低下を考慮した変形係数
- y_{0wi} : 土層 i におけるせん断ひずみ
- v : 地盤のポアソン比
- γ'wi : せん断ひずみによる剛性低下を考慮したせん断ひずみ
- R, K : R-0 モデルの係数
- δ_{wi}:水位低下による地盤の弾性沈下量

③ 予測結果

a. 地下水位低下量

地下水位低下量の算定結果は表 5-6-8 に示すとおりである。自由水、第一被圧水、第二被圧水の水位低下量はそれぞれ約 4cm、28cm、6cm となった。

		動水勾配]		Ι	構诰物		
带水層(地層)	流向	平衡 水位差 (m)	距離 (m)		半長 L(m)	θ (°)	水位低下 量 Sc(m)
自由水 盛土及び (沖積砂質土層)	北西	0.02	88.3 (No.3-4)	2. 3×10^{-4}	235	45	0.04
第一被圧水 (洪積礫質土層)	南	0.49	158.1 (No. 2-4)	2.8 × 10 ⁻³	57.5	90	0.28
第二被圧水 (洪積礫質土層)	北西	0.03	88.3 (No.3-4)	3. 4×10^{-4}	235	45	0.06

表 5-6-8 水位低下量の算定

注:自由水の地下水流向は北西方向であるため、地点 4 の平衡水位を TP-1.31 として水位差を算定した

b. 地下水位低下に伴う地盤沈下量

地下水位低下による地盤沈下量の算定結果を表 5-6-9 に示す。地下水位が表 5-6-8 のように低下し、かつ全地層の流向が同じ(同じ場所で地下水位低下及び 地盤沈下が発生する)と想定した場合の地盤沈下量は約 3.2mm と予測される。

ただし、自由水、第一被圧水及び第二被圧水は流向が違うため、地盤沈下が発 生する範囲は各地盤で違う。よって、実際の沈下量は全地層の流向が同じとした 場合の計算値(約3.2mm)よりは小さくなると思われる。

포 포	下端深度	沈下量	(mm)
地層	(m)	砂礫層	粘土層
В	3.8	0.008	_
As	7.8	0.012	_
Ac	20.6		2.4
Asc	23.0	_	0.5
Dg1	27.1	0.018	_
Dc1	28.1	-	0.2
Dg2	30.6	0.011	_
Dg2	35.9	0.020	
Dc2	41.7		0.1
Dg3	60.0	0.008	
計		0.076	3.14
総沈下量		3.	22

表 5-6-9 沈下量検討結果

(4) 評価

① 環境保全目標

地盤沈下についての環境保全目標は、「環境への影響を最小限にとどめるよう、 環境保全について配慮されていること」、「大阪市環境基本計画の目標の達成と維 持に支障がないこと」とし、本事業の実施が事業計画地周辺の地下水位・地盤沈下 に及ぼす影響について、予測結果を環境保全目標に照らして評価した。

② 評価結果

本事業計画に伴う地下水流動阻害による、検討上の地下水位低下量は自由水、第 一被圧水、第二被圧水でそれぞれ約 4cm、28cm、6cm となり、これらの水位低下に よる地盤沈下量は約 3.2mm と予測された。この値は安全側の配慮による計算値であ り、実際はこの値以下になると思われる。また、仮に計算値を採用したとしても、 周辺埋設管等の一般的な安全管理値(約 10~15mm)に比べ十分小さな値である。

今後は、工事着手前には道路管理者、埋設企業体との協議等により、地下水流動 阻害による周辺埋設管の安全確認を行い、工事中は管理基準値を元に計測管理を行 いながら施工を行い、安全確保に努めるものとする。

以上のことから、周辺環境への影響を最小限にとどめるよう環境保全について配 慮されていること、有害な地盤沈下を引き起こすことはないことから、環境保全目 標を満足するものと評価する。

- 5. 6. 3 工事の実施に伴う影響の予測・評価
 - (1) 予測内容

工事に伴う影響として、山留壁の変形及び掘削底面のリバウンド現象が、事業計画 地及び周辺地盤に及ぼす影響について予測した。

なお、本計画では山留壁先端を遮水層に根入れするため、施工時の地下水くみ上げ による周辺地盤の地下水位低下は発生しない。

予測内容は表 5-6-10 に示すとおりである。

表 5-6-10 予測内容

予測項目	予測範囲	予測時点	予測方法
地盤性状の変化 ・山留壁変形及び掘 削に伴うリバウン ドによる周辺の地 盤沈下量	事業計画地及び周 辺	建設工事中	「山留め設計施工 指針」(日本建築 学会)等を基に予 測

(2) 予測方法

① 予測手順

掘削工事に伴う地盤沈下の予測手順は図 5-6-9 に示すとおりである。 事業計画等をもとに、掘削深さ及び周辺地盤の状況を設定し、山留壁の変形及び 掘削によるリバウンドによる地盤沈下量を算出した。

図 5-6-9 地盤沈下の予測手順

② 予測モデル

山留壁の変形に伴う周辺地盤の沈下量について、「山留め設計施工指針」(日本 建築学会)に基づき予測した。予測式は次のとおりである。

 L_0 :地表面沈下の影響範囲(= (1.0~2.0) H)

- L₁:台形分布での沈下量一定の範囲(m) ※(各根切り時の深さ程度)
- H :山留壁の変位ゼロまでの深さ(m)
- A_{dn}:山留壁の変形面積(m²)
- A_{sn}:地表面の沈下面積(m²)
- S_{max}:最大沈下量(m)

また、リバウンドによる周辺地盤の浮上り量については、「深い掘削土留工設計法」(社団法人 日本鉄道技術協会)の評価式に基づいて予測した。掘削による排 土量を求め、その排土の重量をもとにリバウンドによる周辺地盤の浮上り量を算出 した。予測式は、次のとおりである。

・予測式 Y_R= (-1.234+1.218 σ_R) × 0.7
 Y_R: リバウンド量 (mm)
 σ_R: 掘削による排土荷重 (tf/m²)

③ 予測条件

予測条件は、掘削工事概要を踏まえて次のとおりとした。掘削工事概要は表 5-6-11 に示すとおりである。掘削工事に伴う山留壁の変形は、同種の工事における 実績や梁・ばねモデルによる解析等をもとに最大 5cm 程度と設定した。

掘削深さ	GL-19.5m
	山留壁:TRD工法
山留工法	山留支保工:逆打ち工法
	遮水工法(地下水を汲み上げない)
地盤 5.6.1 現況調査の項による	

表 5-6-11 掘削工事概要

(3) 予測結果

周辺地盤の山留壁の変形に伴う沈下量及びリバウンドによる浮上り量の予測結果は 表 5-6-12 に示すとおりである。

工事に伴い発生する地盤沈下量は約13mmと予測される。

	全工区
山留壁の変形に伴う沈下量	40mm
リバウンドによる浮上り量	27mm
合 計	13mm (沈下)

表 5-6-12 沈下量の予測結果

(4) 評価

① 環境保全目標

地盤沈下についての環境保全目標は「環境への影響を最小限にとどめるよう、環 境保全について配慮されていること」及び「大阪市環境基本計画の目標達成と維持 に支障がないこと」とし、本事業の実施が事業計画地周辺の地盤沈下に及ぼす影響 について、予測結果を環境保全目標に照らして評価した。

② 評価結果

工事の実施にあたっては、地下掘削工事に先立ち、新築建物の全周にわたって、 止水性山留壁を深い粘性土層(難透水層)まで貫入させ地下水を遮水する工法を採 用し、周辺地下水の揚水を防止する。また、高剛性高遮水山留壁及び逆打ち工法を 採用し、山留壁変形及び山留壁欠損に伴う漏水による周辺敷地の地盤変形に配慮す る計画である。

予測の結果、山留壁位置での地表面沈下量は約 13mm となった。山留壁背面の道路下には埋設配管等があるため、工事着手前には大阪市への沿道掘削申請や埋設企業体との協議などにより山留壁変形等による道路及び周辺埋設配管等の安全性を確認する予定である。工事期間中は管理基準値(一般的な安全管理値は約 10~15mm)をもとに計測管理を行いながら施工を行い、安全性を確保する予定である。なお、工事に先立ち山留壁を設置することから、「5.6.2 施設の存在に伴う影響の予測・評価」において予測した地下構造物の設置による地盤沈下が同時に起こる可能性があるため、その影響も含めて計測管理を行う。

また、事業計画地の一部の範囲において、近隣建物との離隔距離が比較的少ない ところがある。現状の離隔では山留壁の変形により建物に対し有害な影響は発生し ないと思われるが、事前に現地を確認し、適切な工事計画のもと作業を進める予定 である。

以上のことから、周辺環境への影響を最小限にとどめるよう環境保全について配 慮されており、また、地盤沈下により影響が生じると予測される場合は適切な対応 に配慮されていることから、環境保全目標を満足するものと評価する。